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Introduction: 
 

New proteomic technologies have emerged that deal with understanding complex systems and diseases 
at a global level, thus allowing an expanded experimental view. Before the advent of mass spectrometry, 
proteomic approaches were initially explored via the use of two-dimensional gel electrophoresis (1) and the 
application of chromatography techniques (2). Unfortunately these techniques proved to be limited to detecting 
only small molecular mass.  Because of the difficulty in identifying large macromolecular structures such as 
individual proteins in the high molecular weight range, their modifications or protein complexes, suppressed the 
broad application of proteomics. This technological hurdle has for the most part been overcome through the 
application of mass spectrometry (MS) when used in combination with developing proteomic databases. 
Furthermore, algorithms have been developed that allow the identification of spectra in an automated fashion, 
reducing the need for manual validation of hits from spectral data. Although, this process has greatly facilitated 
the development of mass spectrometry with respect to proteomics, the process does come with drawbacks such 
as false positives that fit search parameter from a theoretical database that is used to perform cross correlation 
analysis with an experimental spectrum. SEQUEST is an algorithm designed to reduce the false positive 
identification rates with respect to mass spectrometry. The goal of this review is to enlighten the reader on the 
more significant improvements made to increase the efficiency of the SEQUEST algorithm.  
 
Principles of Mass Spectrometry: 

The basic route taken when measuring the characteristics of a sample using MS requires the application 
of three processes; ionization of the sample compound, which usually results in the formation of cations or 
anions, the sorting and separation of the compound by an electric or magnetic field based on the mass to charge 
ratio (m/z), and finally, detecting the separated ions with a detector apparatus.  Since mass spectrometers create 
and manipulate gas-phase ions, they operate in a high-vacuum system. Data analysis is obviously a requirement 
if you wish to interpret the data, but this aspect is separate from the actual MS apparatus (3). The overall 
process is illustrated in figure 2 which shows the basic scheme associated with measuring a compound by MS.  
The most critical element of MS is the ionization of the compound being analyzed.   

 

 
Figure  1.  Schematic of the general process involved in determining the molecular characteristic of a molecular sample when using 
mass spectrometry 

 

This process of MS, involves converting the individual molecules of a compound into ions so that they 
can be moved about and manipulated by external electric and magnetic fields. The actual physical approach 
involves generating an ionic state of the analyte by shooting electrons at the compound.  When an electron 
collides with the molecule it will often “ionize” it by knocking away one of the molecular electrons (figure 3). 



This process will not only affect free electrons (non-bonding) but electrons that are locked in bonds as well. It is 
also important to 

 

 
Figure 2.  The formation of an ion occurs from the collision between a compound and another electron. This particular diagram 
depicts a neutral molecule becoming a cation after collision with an electron.  

 

mention here that residual energy from the collision of the compound with an electron can cause the molecules 
to fractionate into different isoforms (3). Figure 4 illustrates this scenario and depicts a molecule (M) 
fractionating into either an even-cation and a radical, or an odd cation and another neutral molecule. The 
individual products of ionization can give different signals within mass spectra data. An example of this can be 
viewed in figure 5.  

 
Figure 3. Residual energy from the collision between an electron and a compound will result in different fractionating patterns of the 
compound.   

 

 



Figure 4.  Molecular compounds will fractionate into different products upon ionization, and their relative abundance will be displayed 
on the mass spectra data. (A) Representative spectra of carbon dioxide. (B) Representative spectra of propane.  
(The spectra are courtesy of: http://www.cem.msu.edu/~reusch/VirtualText/Spectrpy/MassSpec/masspec1.html) 
 
Mass spectrometry has the ability to detect the overall abundance of ionized products (3).  The spectra of both 
carbon dioxide and propane are shown in figure 4. The ionized products are represented in a vertical bar graph 
X is the mass-to-charge ratio (m/z) and Y is the relative abundance. Within the spectral data, the ion with the 
highest intensity is always assigned an abundance of 100, and is referred to as the base peak (3). Most of the 
ions formed from the ionization process will have a single charge, thus the mass-to-charge ratio will be 
equivalent to the actual mass of the ion. Furthermore, the ion with the highest m/z is generally an ionized 
compound that has not been fractionated.  Spectra with a lower m/z are the fractionated products.  
 

 
Figure 5. Shotgun proteomics identifies proteins from the fragmentation mass spectra of their respective peptides. (a) Proteins are 
fragmented into smaller peptides in the mass spectrometer at specific bonds within the amino acid sequence. (b) Computer algorithms 
focus on the b- and y-ion series as these are usually the most common type of fragmentation patterns obtained from MS/MS. (c) 
Representational spectra for the amino acid sequence listed in (b) (4). 
 
 

Shotgun proteomics has proven to be a remarkably powerful technology for identifying proteins. 
Analysis can be done with individual, purified protein samples, or from samples that contain multiple species f 
protein such as a cell lysate (4). This technique is often performed using Tandem mass spectrometry (MS/MS). 
A tandem mass spectrometer can be thought of as two mass spectrometers in series connected by a chamber that 
can break a series of proteins into fragment ions. This chamber is known as a collision cell.  A sample is 
"sorted" and "weighed" in the first mass spectrometer, then broken into pieces in the collision cell, and a piece 
or pieces are sorted and weighed in the second mass spectrometer (5). The fragmentation that results from a low 
energy collision induce dissociation (CID) process usually follows a pattern where the peptide breaks along its 
backbone between adjacent amino acids. Breakage at the bond between the alpha carbon and the carbonyl 
carbon produces the a-ion and x-ion series of fragments. Breakage at the carbonyl carbon-amide nitrogen bond 
produces the b- and y-ion series, and is often the most common bond broken upon fragmentation. Finally, 
breakage at the amide bond produces the c- and z-ion series (4). The fragmentation of peptides occurs 
randomly, thus a sequential N-terminal and C-terminal peptide ladder can be constructed due to the detection of 
different mass/charge ratios for each fragment ion. Identical proteins in a sample that is subjected to low energy 
(CID) can be used to generate such a fragmentation patter revealing the sequence of the protein.  



Generally, there are two techniques used to detect proteins and peptides from an experimental sample; 
these are MS peptide mass fingerprinting (PMF) and MS/MS peptide fragment fingerprinting (PFF) spectra. In 
MS (PMF) the mass pattern obtained from measuring the masses of purified or simple protein mixture, 
enzymatically digested or chemically cleaved, is then compared to theoretical mass patterns generated in silico 
from a protein database (6-8). In MS/MS both intact mass of the peptide (parent ion mass) and fragment ions 
are recorded. When PMF fails, uniterpreted fragment ion masses can be used in correlative database searching 
to identify proteins whose peptides would likely yield similar CID spectra under the same fragmentation 
conditions. Probability-based matching is used here by algorithms such as SEQUEST (9). SEQUEST, in an 
automated fashion, converts the character based representation of amino acid sequences in a protein database to 
a fragmentation pattern that is used to match fragment patterns from an experimental spectrum as explained 
above (9) With the advent of this algorithm and other like it, peptide mass mapping, database searches using 
tandem mass spectrometry (MS/MS), de novo sequencing followed by homology search and validation of 
protein identifications has almost become entirely hands off allowing for large high throughput studies with 
respect to proteomics.  
 
The SEQUEST Algorithm: 
 
(Eng et al., J. Am Soc Mass Specgtrom 1994, 5, 976-989) 
 

SEQUEST is a method used to correlate the uninterpreted tandem mass spectra of peptides produced 
under low energy (10-50 eV) collision conditions with a theoretical spectrum consisting of amino acid 
sequences obtained from protein data banks. The computer algorithm developed by Eng et al., identifies 
peptides from experimental tandem spectra by first performing an initial reduction of the spectral data to reduce 
background noise and removing all but 200-500 of the most abundant fragment ions. Additionally, a 10-u (one 
u is roughly equal to one Dalton) window around the precursor ion is removed to ensure that a predicted 
fragment with a similar ion-to-mass charge ratio is not matched to the precursor ion. Once background noise 
from the spectra is removed, an initial scan of protein sequences whose mass falls within the mass-tolerance 
from a specified database is performed indentifying linear sequence combinations in an N-terminal to C-
terminal fashion.  Mass-to-charge ratio values of theoretical peptides obtained from a database search are 
calculated as follows (equation 1).In this equation an represents the mass of the amino acid.  

 
 For type-bn ions:   bn  =  Σ an  +  1 

 
For type-yn ions:    yn  =  MW  - Σ an 

 

 
Sequence evaluation and scoring of identified peptides is determined by several different criteria. 

Fragments ions that fall within a +/- 1 u are recorded as well as the sum of their relative abundances (ni and im 
respectively). The algorithm also takes into account the continuity of consecutive matches for a fragment within 
the ion series (β) and can be observed below: 
 

Sp = (Σ im)ni(1 + β)(1+ρ)/nt 

 
Here, (ρ) represents the presence of ammonium ions and these values are normalized to the total number 

of predicted sequences (nt) to generate a score for each hit, Sp. This Sp value is then used to identify the top 500 
hits from the experimental spectra. As explained previously, SEQUEST is an algorithm that has the ability to 



generate a theoretical library using simple search parameters to perform a cross-correlation analysis. This 
theoretical database is then used to perform a cross correlation search with the experimental to generate an 
XCorr value for each hit or protein specie identified. To compute this score, the SEQUEST algorithm first 
normalizes the experimental spectrum by assigning a magnitude of 50.0 to each predicted mass-to-charge ratio 
values for type-b and –y ion. Fragment ions within +/- 1u are assigned a magnitude of 25.0 and fragments that 
exhibit a neutral loss of water and ammonia such as those from a- type ions, are assigned a magnitude of 10.0. 
This normalized experimental spectrum serves as the X value for the cross correlation function and the 
theoretical serves as the Y value. The SEQUEST’s XCorr value is then computed via the correlation function 
Corr (t), or the product between the vectors X and Y, and Y shifted with respect to X along the m/z axis by t 
mass units. This calculation is shown below: 
 

(a) Corr(t) = ��iyi+t 
 

(b) Xcorr = Corr(0) - <Corr(t)> 
 

Here, the nonzero elements xi and yi represent the peaks from the processed (normalized) experimental 
and theoretical spectrum. A simpler explination is that the XCorr value is essentially a summation of the 
number of fragment ions that are common between the X and Y vectors. This can also include small variations 
such as some mass measurement errors are assumed to occurr. Finally, this score is corrected to account for the 
number of matches that are occurring at random as shown using the formula above (b). Generally, values ≥ 1.9 
for +1 ions, ≥ for +2 ions, and ≥ 3.75 have been classified by others as significant (Link 1999 and Washburn 
2001…Qscore) Finally, SEQUEST computes the relative difference between the first and second XCorr values 
termed ∆Cn. Generally, high values are regarded as a correct assignment with respect to the top Xcorr value. 
Although SEQUEST has been shown to be very successful with the identification of protein species from 
experimental analyte, it does have its faults. Like other algorithms that are based on additive features (for 
example, the continuity that is taken into account for the Sp value), it becomes dependent on the mass of the 
peptide, the overall charge state of the ion fragments, and the overall quality of the spectra. Figure 6 (right) 
displays a graph that plots the correlation between peptide length and Xcorr values. An obvious trend can be 
observed with respect to peptide length and correct peptide assignment.  
  
 

                                            
 
Figure 6. The graph on the left displays the correlation of ∆Cn and Xcorr. As mentioned previously, the higher the difference between 
the first and second Xcorr values, the higher the probability that the first Xcorr is correct. The graph on the right shows the correlation 
between Xcorr values and peptide fragment length with respect to the correct assignment of a peptide from experimental spectra. This 
plot suggests that the Xcorr value is dependent on peptide fragment length generated from a low energy CID (10).   



 
 
Current Dilemma in Database Search Algorithms, “The false positive”: 
 

Although, search algorithms have made the process of protein identification extremely efficient, 
problems still persist that often require some manual assistance. One of the most significant problems that are 
encountered when using programs such as SEQUEST that are designed to identify protein species from mass 
spectral data, is failing to assign the correct peptide sequences from a search (false positives). It is totally 
plausible that the best matched returned by the database search tool is not the correct one (10-12). In fact, one 
can expect that a large fraction of the experimental spectra generated by MS/MS, are not matched to a sequence 
database. This issue is the result of many reasons that include deficiencies in the scoring scheme, low MS/MS 
spectrum quality, fragmentation of multiple peptide ions, presence of homologous peptides, incorrectly 
determined charge state of peptide mass, restricted database search and sequence variants of novel peptides. 
Deficiencies within the scoring scheme, if not designed well enough, hamper the process of true peptide 
identification and often elicit the identification of the incorrect peptide as a result of a higher score generated 
than the correct peptide or protein. Most databases are designed to generate a simplified representation of the 
peptide ion fragmentation process. Early aspects of spectra search algorithms when generating a theoretical 
spectrum, often assume that all ion fragment peaks are present in equal intensities. But, anyone who has 
experience using mass spectrometry knows that the fragmentation patterns vary greatly with respect to the 
amino acid sequence. For example, the presence of a proline in a peptide sequence can result in a high 
fragmentation pattern corresponding to the breakage of the N-terminal side of the proline, thus skewing the 
relative frequency of fragmented peptides (13, 14). Low MS/MS spectrum quality can also hinder the 
identification process for the correct peptide sequence present from an experimental analyte. A spectrum of low 
quality will result in noise peaks, low signal-to-noise ratios or even have missing fragment peaks owing to 
incomplete peptide fragments. Finally, when using shotgun proteomics, the number of low-quality spectra in a 
dataset can be high as a result of various contaminants that may be present in the experimental analyte, such as 
non-specific proteases (15).   

Another common reason for incorrect protein identification is the variation in the charge state of the 
fragment ions or as well as the mass of the peptide. If the charge state of an ion cannot be determined, then a 
search is again performed against the database but with the assumption that the fragment has a +2 or +3 charge 
state (10). But if the charge state is actually +4, or an incorrect classification of charge state is made by the 
analyzing software, then the correct peptide will not be found and possibly an incorrect peptide is considered a 
good match. Finally, one of the most significant reasons for the generation of false positives is an design of the 
search parameters used that in effect restricts a database search. For example, database searches that take into 
account many type of post-translational modifications of often ignored, excluding modifications that are 
considered common, due to the fact that such a search can be so time consuming. Furthermore, databases are 
often searched with the specifications towards one type of digestive product from a particular protease (as 
mentioned above). A spectrum will not be identified if it is produced by a peptide containing an unspecified 
modification, resulting from an unexpected protein cleavage, or containing more than the allowed number of 
missed cleavage (16).  

For many MS/MS spectra, the best scoring peptide assignment returned by a database search algorithm 
is incorrect. Thus, manual validation of the search results has to be performed in order to filter out the false 
positive (9). Although very time-consuming, manual validation can be performed on small scale levels, such as 
a single species or a highly purified sample of protein. Even then contaminants can be present, but such spectra 
can be teased out by a trained mass spectrometry specialist. But, Manual validation of a large datasets 
containing tens of thousands of spectra though, is simply not feasible. Instead, manual validation is replaced 



with an automated or semi-automated fashion that generates a database search score representing “hits” by 
programs such as SEQUEST (9). The next section takes a look at some of the methods that were previously 
used to optimize the SEQUEST search algorithm.  
 
Recent Methods Used to Decrease False Positive Hits from a SEQUEST Search: 
 
(MacCoss et al., Anal. Chem., 2002 74 (21), 5593-5599) 
 

Earlier work that focused on increasing confidence with respect to hits generated by SEQUEST 
addressed the problem of non-specific cleavage of sample peptides by non-specific proteases. The XCorr values 
produced by SEQUEST are not only database size-dependent, but are also dependent of the quality of the 
spectra and the quality of the fit to the model spectrum as well and non-specificity of fragments can increase 
false-positive hits with respect to these dependencies.  An effective method to decrease the false positives 
identifications relative to true positive hits was employed by Yates et al, which provided a probably-based 
validation for peptides hits generated by the SEQUEST algorithm. Before the advent of algorithms that focused 
on enriching true positives from a SEQUEST search, scores were essentially normalized using the difference 
between the first- and second-ranked sequences (∆Cn). This proved inefficient since an XCorr value for one 
peptide may not reflect a similar closeness of fit for another peptide with the same score. Therefore a scoring 
parameter was needed that functioned specifically to maintain consistency for peptides regardless of how the 
ion fragments are generated (i.e. variable proteases or different peptide separation techniques), or how large the 
peptide is.  Like SEQUEST, SEQUEST-NORM (normalized cross-correlation scoring algorithm) identifies the 
“best” 500 amino acid sequences from a protein database and performs a cross-correlation between the 
theoretical spectrum and the experimental tandem mass spectrum data. The major difference between 
SEQUEST and SEQUEST-NORM is that the cross-correlation scores are then normalized to the cross-
correlation of the input spectrum against itself (autocorrelation), effectively identifying the best possible match 
between the experimental spectrum and a theoretical spectrum from a protein database. Validation of this 
autocorreltion was performed using the following equation: 

 
 

At variable intervals, XCorr values will result in either a correct match or incorrect match which is represented 
by f. The sum of all the incorrect matches is then used to evaluate the confidence of the peptide sequence 
identified by SEQUEST-NORM. What this essentially means is that as the XCorr value increases, the 
probability that the identified peptide is correct increases and consequently the likelihood of a given peptide 
being a false positive, decreases. In order to validate the normalization of the SEQUEST-NORM algorithm for 
individual peptide matches with respect to the identification of a particular protein in the experimental spectra, a 
test to determine how multiple peptides that are normalized would affect the identification of a protein from 
experimental spectra as a whole. For this particular goal, the equation below was used.   
 

Protprob = 1 – [(1- Pept1Prob)(1- Pept2Prob)(1- Pept3Prob)(1-PeptnProb)…] 
 

The final product of a SEQUEST-NORM search will result in more true positive hits as a result of 
removing the dependence on peptide length, which can occur with a SEQUEST search. One major advantage of 
SEQUEST-NORM over SEQUEST as a result of the normalizing process in conjunction with a probability 
based calculation, is that it does not rely on cleavage specificity as an input parameter. This effectively 



decreases the trend of peptide mass and XCorr values that often occurs with SEQUEST. A comparison of 
XCorr values generated by peptides that were subjected to multiple proteases in order to simulate non-specfic 
cleveage, was made between SEQUEST and SEQUEST-NORM. A linear plot of SEQUEST and SEQUEST-
NORM showed that the normalized SEQUEST-NORM search results did not result in a correlation of peptide 
mass and XCorr values as SEQUEST search often does (XCorr values tend to increase as peptide size 
increases). Furthermore, a search of spectra with SEQUEST-NORM of peptides generated by multiple 
proteases showed no increase in mean XCorr values of ions with a charge state of +2 and +3 with respect to 
false positives. Finally, search was performed on a total of 215, 419 tendem mass spectra to determine a 
frequency of correctly identified peptides and incorrectly identified peptides versus XCorr values after applying 
a second-ordered Savitsky-Golay filter. This showed that the correctly matched XCorr values have a Gaussian 
distribution (where r= 0.972), versus incorrectly matched XCorr values that are predominantly skewed toward 
higher XCorr values suggesting that the normalizing SEQUEST algorithm can indeed enrich true positive hits 
from a tandem mass spectral search.  
 
(Moore et al, J. Am Soc Mass Spectrom 2002, 13 378-386) 
  

Another earlier development that focused on enriching true positive hits from a SEQUEST search was 
based on taking advantage of the multiplicity of matches from a tandem mass spectrum and determining the 
quality of the match. The algorithm, Qscore, takes into account that SEQUEST will always return a best match 
peptide as long as at least one peptide from the database falls within the peptide mass tolerance. Up to this point 
the quality of this match was still not able to be determined. Furthermore,  the quality of the match could be so 
low that the overall score for the protein is worse when it is included, further reducing the reliability of 
SEQUEST hits. Therefore Moore et al developed a statistically based algorithm used to determine the goodness 
of a protein match that is able to ignore SEQUEST matches that effectively decrease the scores of true 
positives.  As mentioned before, it is important to determine if there is a reasonable chance that a match could 
have come about by chance. Here, Moore explains that even the smallest non-viral database can generate a hit 
from a single peptide match from a SEQUEST search. Therefore, he postulates that “a null hypothesis can be 
adopted which specifies that all matches are essentially random and accept as identified on those proteins that 
generate more matches than would be expected by this null hypothesis”. The first aspect of the algorithm 
determines the expected number of matches for a particular peptide is as follows: 
 

Nmatch (M, N, P) = P(1-M)N!(N-M)!M! 
 

Here, N is equal to the number of individual searches, M is equal to a number of matches against a 
specific protein, and P is equal to the number of proteins in a database. Although this formula is designed to 
determine the numbers of expected matches from a database search with the number of matches increasing as 
the number of spectra are searched, several factors can generate more expected results then assumed. For 
example, a single search of a database can often result in more than one protein match. One particularly difficult 
trend that must be accounted for is the representation of peptide fragments in very large proteins. This can 
happen multiple times in several unrelated species due to the simple fact that there are a limited number of 
possible sequences. Large proteins could potentially contain hundreds of similar peptides and depending on the 
database size, can effectively skew the number of predicted matches. To get around this dilemma, Moore et al, 
devised a second component of the Qscore algorithm that could account for the discrepancies of the database 
size. By performing a theoretical digestion of the entire database and counting the number of distinguishable 
peptides derived, a comparison can be made between the number of identified peptides in the database and the 



number of peptides fragments generated from a theoretical database. Accounting for database size discrepancy 
is determined as follows: 
 
                              Nmatch(M, N, p, d) = (d/p)(1-M)*N!/(N-M)!M! 
 

Here, (d) is equal to the number of peptides identified in the database and (p) is equal to the number of 
peptides that are generated from a theoretical digestion. The finals aspect of the Qscore algorithm takes into 
consideration the actual quality of peptide matches. Because a strong match is less likely to be produced from a 
false positive, it is possible to include this information into the algorithm and essentially generate a formula that 
excises out such scores. Thus we get the Qscore, an algorithm that can greatly reduce the number of SEQUEST 
protein identifications that have to be validated manually, and is computed as follows: 
 

Qscore (M, N, p, d) = -log(d/p) + i=mΣM log[(i*q(i)*(d/p))/(N+1-i) 
 
Here (i) or q(i) is equal to the match quality information for the ith peptide.  
 

 
    
Figure 7. This plot shows the distribution of Qscores for proteins identified manually (a), those that are considered contaminants (b), 
those that are considered present in the sample but were missed even with manual validation (c) and finally, false positives (d).  
 

In order to evaluate the Qscore algorithm, Moore et al performed a controlled search with roughly 1800 
spectra in conjunction with SEQUEST. This search resulted in the identification of 58 matches, 88 
contaminants, 8 misses, and 42 false positives. The Qscores for the matches ranged from a minimum of 0.14 to 
467.01 and false positives ranged from -1.1 to 2.12. These values and categories can be observed in figure 7 
showing the effectiveness of the Qscore algorithm.  
 
(Razumovskaya et al., Proteomics 2004, 4, 961-969) 
 

Separation of false positives from true identifications is a difficult task when using peptide identification 
algorithms. SEQUEST primarily uses the Xcorr and the number of charges to filter out said incorrect profile 
matches. Unfortunately this can be misleading as an X correlation score for a particular peptide may have a 
different meaning for another peptide that differs in length and charge as mentioned previously. Furthermore, 



the distribution of the X correlation scores for correct and incorrect hits, often do not have a clear separation.  
Therefore manual interpretation of the top hits derived from the SEQUEST scoring scheme is required to 
identify any false positives. In work described by Razumovskaya et al., a new scheme has been developed that 
focuses on assessing the reliability of peptides identified via SEQUEST by combining a neural network and a 
statistical model that normalizes SEQUEST scores. This method has been shown to provide a reliability 
estimate for each SEQUEST hit and in general, is accomplished by first normalizing peptide scores and 
statistically estimating the probability that the peptides identified by SEQUEST are correct. These statistical 
validations are then applied to the identified peptides by SEQUEST, limiting false positives in an automated 
manner.  

The effectiveness of this method stems from the use of a neural network. An artificial neural network 
(ANN), often just called a "neural network" (NN), is a mathematical model or computational model based on 
biological neural networks. It consists of an interconnected group of artificial neurons and processes 
information using a connectionist approach to computation. In most cases an ANN is an adaptive system that 
changes its structure based on external or internal information that flows through the network during the 
learning phase (17). The neural network described by Razumovskaya et al., uses the following six input 
parameters to identify peptides from spectral data: the SEQUEST Xcorr, peptide charge state, ∆Cn, SpRank 
(Sp), ion coverage and the length of the peptide to determine true positives of a data set. The first aspect of the 
algorithm begins with the training of the neural net. The neural net was given a training data set that included 
2,784 correct hits and 34,287 incorrect SEQUEST hits. 70% of this data set was used to actually train the 
network and the other 30% was used to test it. The scoring output from the neural network ranges from 0.0 to 
1.0, where the output represents an estimate of assignments correctness, which can then be used to generate a 
histogram. This improvement can be seen in figure 8. One advantage of this approach is that it provides 
improved resolution of assignments for peptides that SEQUEST scores. This can be particularly true for those 
hits that reside in what is considered a “gray area” of separation. Once the neural network has been trained, 
Razumovskaya describes a simple Bayesian formula that estimates the conditional probability, P, of true peptide 
identification. Once the probability of a peptide being correct has been determined, this information can be used 
to determine what peptides would identify a false protein by chance. This calculation can be observed below: 
 
 
 
Pscore= Π  1−1�i �� Ι �� � � 
  
 
 
Here, the probability of (ai) to be a true hit is defined as (Pi), and Mi is the number of proteins that were found 
to contain peptide ai. Thus, Pscore is equal to the probability that protein A is not in the analyte. In simple 
terms, this formula is essentially determining the probability of a protein being identified by chance with respect 
to the peptides originally identified by the neural network. Furthermore, Razumovskaya have shown that the 
smaller the Pscore, the more likely that a proteins identification was not by chance.  

This method has provided significant improvement with respect to increasing the resolution between a 
true positive and a false positive. Furthermore the neural network makes the use of additional parameter when 
identifying the likelihood that a peptide fragment was correctly identified by SEQUEST. But this method does 
have its drawbacks.  First it does not address the possibility that the first score given in a SEQUEST search may 
not be the correct protein, and since the neural network is trained on only top score hits, there is the possibility 
that will not be able to distinguish the top score of an incorrect peptide, and a second score being the correct 
identification.  



 

 
 
Figure 8. The neural network has the ability to finely separate the correct peptide hits from incorrect peptide hits from a SEQUEST 
search.  
  
(Sun et al., J Mol & Cell Proteomics 2004, 3.12, 1194-1199) 
 

Another program that allows one to validate SEQUEST results in an automated fashion is described by 
Sun et al.  Advanced mass spectrum screener or AMASS, takes advantage of the fact that highly abundant 
fragment ions are more likely to be signals and that the MS/MS spectrum of an optimally fragmented peptide 
should theoretically contain continuous fragments. Based on these two observations, two functions were 
incorporated into the algorithm. These are Match Percentage and Continuity. Match Percentage is a function 
that serves to reduce the background noise from spectra and is calculated as follows: MatchPct = [number of 
matched daughter ions with relative abundance higher than RACutoff/number of total daughter ions with 
relative abundance higher than RACutoff] x 100%. Here the RACutoff (Relative Abundance Cutoff) is a 
number used to serve as a relative abundance cutoff point in MS/MS spectra and is a value that ranges from 0 to 
100. Generally, the higher the value, the less ion fragments were selected. Consequently, a higher MatchPct 
value is representative of more fragment ions above a certain RACutoff are matched and that usually the higher 
the MatchPct value, the better the quality of the identified peptide fragments.  

The second function used to identify peptides from spectral data is the Continuity function. This is 
determined by the equation displayed below: 

 
 

 
 

 
Here, f(i) = 1 if the ith b or y series ion is matched, 0 otherwise; b(i) = n2 if the (i + 1)th  b series is not matched 
and n = the number of continuously matched b ions immediately before the ith (including the ith ion), 0 
otherwise; y(i) = n2 if the (i + 1)th y series ion is not matched and n = the number of continuously matched y ions 
immediately before the ith (including the ith ion), 0 otherwise; and I = the amino acid number of the peptides.  



The Cont algorithm will function specifically by adding the number of continuously matched b and y series ions 
to the second degree in addition to the total number of matched ions. This value is then normalized by dividing 
the maximum possible value of the addition and multiplying by 100. Generally a higher Cont value suggests 
more continuous matching fragments from a SEQUEST search.  
 

What is particularly effective about this algorithm is that it can be combined with the RScore algorithm 
developed by Wang et al, which has been shown to increase the number of true positive peptides identified from 
spectra (18).  The RScore criterion is a measurement of randomicity and can be used to evaluate tandem mass 
spectra data in conjunction with SEQUEST. This is generally accomplished by comparing hits from a 
SEQUEST cross-correlation search with other hits from the same SEQUEST search.  For peptide identification 
numbered from 1 to n for the same spectrum, RScore is calculated as followed: 
 

 
 

Here, IntenPct(i) is the percentage of intensity that was matched in identification i, and k is a parameter that 
depends on the instrument behavior. Since RScore takes into account the quality of the spectra taking into 
account the relative intensity of fragment ions from the spectra. Thus, the SEQUEST threshold for determining 
true positives with respect to peptide identification can be lowered to accept more true positives. Using spectra 
obtained from a mixture of 18 proteins, a SEQUEST search was performed against a database that contained 
88,374 proteins which included the Swiss-Prot human protein database and the original 18 proteins from the 
experimental mixture. In order to assess the accuracy of AMASS, four searches were performed using the 
different filter combinations described above (figure 9). These were the Xcorr, the MatchPct, the Continuity 
function (Cont) and AMASS. This search using each of the filtering parameters showed that alone, AMASS 
could lower the false positive rate without significantly affecting the number of true positives generated from a 
search, providing a reliable means to increase the identifications by reducing the false positive detection from a 
search.  
 
 

 
 

Figure 9. True positive (TP) and false positive (FP) hits from the different filter used to determine the effectiveness of the AMASS 
filter. As observed, AMASS can reduce the FP identification rate without affecting the identification of true positives.  
 
 
Conclusion 
 



As shotgun proteomics becomes more defined, the efficiency of methods created for SEQUEST, makes 
the technology much more applicable towards modern day high throughput proteomics studies. As described 
previously, a better search can be performed by using increasingly large databases as well as the number of 
database searched for experimental spectrum comparisons and construction of theoretical spectrum for peptide 
and protein identification. As database sizes increase and proteomics studies become more ambitious, the need 
to increase the speed of the search becomes increasingly important. One such method has been developed by 
Eng et al., which uses an alternative method to the cross correlation score that does not require the Fast Fourier 
Transforms that is used to compute the original SEQUEST correlation function. In a comparison of this new 
method and the old saw an increase ~75 times greater than the older, original method. Because of the way that 
the Xcorr value is computed with this faster algorithm, it is now possible to determine an Xcorr value for every 
peptide from the sequence database that is being searched. Thus new, faster, more sensitive cross correlations 
can be performed relative to older methods that were computationally expensive. This should enable more 
sensitive and sophisticated search methods to develop that in the end will be able to take into account multiple 
variables such as non-specific proteolysis, incorrectly determined charge state as well as chemical/post-
translational modifications. Eventually the creation of new algorithms that are ever increasingly more 
sophisticated will help to refine the identification of true positives, the field of proteomics, and open the door 
for amazing new discoveries.  
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